

Energy Absorption Is prescription constructive?

Safe Vehicles Structures Workshop 28 April 2004 The Belfry – UK Midlands

Introduction

- No such thing as a train without crashworthiness
- Or Energy Absorbing capability
- All structures have an inherent level of crashworthiness
- How do we manage and design it into the structure
- Where does the definition of Energy Absorption end

The Legislation

- Rail vehicle crashworthiness legislation is produced in order to save the lives or lessen the injuries of the occupants during the prescribed collision scenarios:
 - Train to train
 - Train to locomotive
 - Large obstacles level crossing
 - Small obstacles
- To reduce the deceleration during these scenarios it is necessary to absorb energy forward of the driver.
- The use of Energy Absorbing Units is key to this criterion.

Active & Passive Safety

Laws of Motion

Velocity km/h	Velocity m/s	Velocity into Solid Wall m/s	Displacement @ 5g m	Total Absorber Length m (70/30 ratio)	Minimum Total Cab Length m (Absorber + Survival Space)
36.00	10.00	5.00	0.25	0.36	1.11
55.00	15.28	7.64	0.59	0.85	1.60
60.00	16.67	8.33	0.71	1.01	1.76
120.00	33.33	16.67	2.83	4.05	4.80

Compression Ratio

 The calculation assumes a 70/30 ratio of length to absorb energy against fully compressed length

Cab Layout 1

- Split into two sections
- > A is the energy absorbing section
- **B** is the 0.75m driver's survival zone

Short-nosed vehicles

Cab Layout 2

- Split into three sections
- A is the energy absorbing section
- **B** is the 0.75m driver's survival zone
- **C** is the secondary energy absorbing zone

Alternative Energy Absorption

Conclusions

- Energy absorption can produce mean deceleration level of 5g in main occupant or passenger tubes
- Difficult for the driver's zone.
- Vehicle Crashworthiness legislation is defined to save the lives or lessen the injuries
- Vehicle structure validation should use occupant injury levels
- Passive safety systems could be deployed to protect in the impact phase
- Necessary to accept a higher deceleration rate in the Driver's area
- Provide an alternative means of energy absorption air bag system
- Is 5g mean deceleration low enough to afford the occupants the necessary level of Passive Safety without significant redesign of vehicle interiors?

BOMBARDIER TRANSPORTATION

